-10n^2-14n+224=0

Simple and best practice solution for -10n^2-14n+224=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -10n^2-14n+224=0 equation:



-10n^2-14n+224=0
a = -10; b = -14; c = +224;
Δ = b2-4ac
Δ = -142-4·(-10)·224
Δ = 9156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9156}=\sqrt{4*2289}=\sqrt{4}*\sqrt{2289}=2\sqrt{2289}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{2289}}{2*-10}=\frac{14-2\sqrt{2289}}{-20} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{2289}}{2*-10}=\frac{14+2\sqrt{2289}}{-20} $

See similar equations:

| 3x+2(-4x-10)=-65 | | (10x-30)=28 | | x2−2x−3=0 | | (10x-30)+28=180 | | -22=-6x-2(-4x+6) | | 30x^2-160x+2=0 | | 21(2-(x))+12x=44 | | 1=n+3 | | -3x+3(7x+13)=-159 | | x+33/2=17 | | Y=200-12x | | 4-y^2=121 | | (4)(1^2-8-16i^2+16)=0 | | 2k+4=34 | | p/6+2=4 | | 16z+141=96z | | (e+16)=180 | | (4)(1^2-8-16i^2+16)=100 | | -70=2+8v | | 5(4x+3)+9x=(20x+15)+9x | | -9=k/8-6 | | -10n^2-22n-3636=0 | | 2/x-1+4/2-x=0 | | (3e-32)=180 | | 12÷(a+3)=0.2 | | x=0.853-0.0013/0.2084 | | -116=-2x-4(5x-15) | | 3(3x+2)=2(4x+7) | | 2(3x+2)=(2x-5) | | 3+(b+8)=3+(b+8)= 3+(8+b) | | 12x+5=-8x | | -2(x-5)=34 |

Equations solver categories